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Fig. 1—A dielectric obstacle in a rectangular waveguide. The obstacle is nonsym-
metric with respect to a plane perpendicular to the axis z of the waveguide.
The cylinder extends a distance d in the z direction.

Fig. 1). In order to obtain bounds on the
three distinct elements of By, we evaluate
(5) by using three different forms of the trial
function, E;. To do this we choose the fol-
lowing three values for eg,

0= () () (1)

The corresponding values of eg! Byeg are then
Bn, Bzz, and B11+Bzz+2Bm. The exact
solution of a dielectric slab, which fills the
region 0<z<d of the waveguide (the slab
completely encloses the obstacle), is intro-
duced as a trial function. The permittivity
of the slab is retained as a parameter which
can be varied to improve the bounds. The
trial function within the region of the di-
electric slab is then

_ (iCsin (rx/a) cos Kz)
. jD sin (wrx/a) sin Kz/ '

where K is the parameter to be varied, Cand
D are constants and j is a unit vector in the
v direction. eptByeq, and C and D are de-
termined by matching the tangential com-
ponents E, in (7) and H; at z=d to the
asymptotic trial expressions (B replaced by
By,) of (3), and by specifying the value of 8.
It can be shown that for

0]

1
=7 —kd, d(&2 4+ W)t < il

we have
Bg— —
and
as > [(n/2)? — p2d? — Wd?l/pd2.  (8)

The requirement d(k24-W)V2<ir means
that the axial extent & of the obstacle must
be less than 1), where A, is the guide wave-
length in the dielectric.

Substituting (6), (7) and (8) in (3), we ob-
tain the upper and lower bounds on Bu, B,
and By+Bn+4-2Bp:

—sec? (Kd) [P*Q+ + (2PR + RO, (a) ™!

< Kd tan (Kd) — KdBy
+ sec?(Kd)(PQ* + RI,) <0, (9a)
—csc? (Kd)[P20™ ++ (2PR + R)Iy)(ag') !

< — Kd cot Kd — KdBs

+ esc? (Kd)(PQ™ + RIp) <0, (9b)
— {sec? (Ka)[ P20+ + (2PR + 2R} 1.

+ csc? (Kd)[ P20~ + (2PR + 2RI ,]

+ 4(PR + R2) sec (Kd) csc (Kd)I} (ag’)™1

< Kd[tan (Kd) — cot (Kd)]

- Kd(Bu + Baz + 2312)

+ sec? (Kd)(PQ* + RI,)

+csc? (Kd)(PQ~ + RTo)

+ 2R sec (Kd) csc (Kd)I <0, (9¢)
where
P = (kd)? — (Kd)?

0*~ = {1 + sin 2Kd)/(2Kd)]
R = iW4?
o = (r/2)* — (k* + W)d*

I, = (2/abd) f sin? (wx/a) cos? (Kz)dr
obst

Iy = (2/abd) f sin? (wrx/a) sin? (Kz)dr
obst

= (2/abd) f sin? (rx/a) cos (Kz)
obst sin (Kz)dr

(b is the narrow dimension of the wave-

guide). The range of integration in Io, I, and
I is over the volume of the obstacle.

K. KALIRSTEIN

B. SCHULDINER

U. S. Naval Appl. Sci. Lab.
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Brooklyn, N. Y.

Note on Tabulations of Constants
for Rigid Hollow Metal Rectangular
Waveguide

Precise four decimal place tables of free-
space and waveguide wavelength and related
ratios for rigid hollow metal rectangular

Manuscript received November 21, 1963.

253

waveguides were computed by the Sperry
Microwave Electronics Company and pub-
lished in this journal in 1956.* This set of
tables was later extended to cover 28 Ameri-
can waveguide sizes and appeared in a hand-
bhook.?* Booth has published a set of micro-
wave data tables including waveguide wave-
length to three decimal places for ten com-
monly used British rectangular waveguide
sizes.?

Unfortunately, two of these tabula-
tions!2 use a “low” value for the speed of
light: ¢=299776 mks and thus contain
errors in their tabulated constants. Booth's
tabulations use the presently accepted value
of ¢=299792.5 km/sect but cover only ten
British waveguide sizes.

The errors entailed by assuming the
older “low” value of ¢ can hest be explained
by examples comparing the free-space and
waveguide wavelengths computed using the
“low” and “accepted™ values of ¢. Let us first
examine the error entailed in the computa-

A (emd A (cm)
frequency (Ge) ¢ z(lisolg?g 76 ¢ =(2u9s£§r7l§2.5
km/sec km/sec
0.275 109.0094 109.0155
1.000 29.9776 29.9793
160.000 0.2998 0 2998

tion of free-space wavelength. Thus it is seen
that for frequencies below 100 Gc/ errors in
A may occur in the third or fourth decimal
place tabulated if the “low” value of ¢ is
used. In a similar fashion, errors can be ob-
served in waveguide wavelength for a single
waveguide size. Let us, for example, examine
A, for the common 2.000 X 1.000 inch outside
dimension waveguide (IEC R-48, British
WG-12, American WR-187 and RG-49/U
numbers):

?g(qm) %g(c;m)

using using
frequency (Ge) ¢ =209776 ¢ =1299792.5

km/sec km/sec

3.600 17 2416 17.2454

4.800 8.2815 8.2823

6 400 5.3822 5.3825

Errors in A, can be observed in the third
decimal place tabulated if the “low” value
of ¢ is used.

In summary, then, presently available

. } p -

tabulations of rectangular waveguide con-
stants are either slightly restricted in scope
or are present numbers that are slightly in
error for the most commonly used wave-
guide sizes for frequencies below 100 Ge.

There are presently available 38 stand-
ard rectangular waveguide sizes in approxi-
mately two-to-one dimension ratio cata-
logued according to the International Elec-
trotechnical Commission, American and
British systems. To the author’s knowledge,
no one complete cross referencing of identi-
fication systems® or complete set of tables

1 Sperry Microwave Electronics Co., “Tables of
constants for rectangular waveguides,” IRE TRaNs.
oN_ MICROWAVE THEORY AND TECHNIQUES,” vol.
MTT-4, 12 page supplement; July, 1056. .

2 “Microwave Engineers” Handbook,” Horizon«
House-Microwave, Inc., T, S. Saad, Ed., Brookline,
Mass.; 1963. .

2 A, E. Booth, *Microwave Data Tables,” Iliffe &
Sons, London, England; 1959.

4 A, G, McNish, “The speed of light,” IRE TRANS.
ON INSTRUMENTATION, vol. I-1(, pp. 138-148; De-
cember, 1962,

5 T. N. Anderson, “Waveguide alphabet soup or
KXCSLP,” Microwave J., vol. 4, pp. 42-43; May,

1961. Cross references American to IEC numbers for
34 American waveguide sizes.)
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of constants for all 38 waveguides (using the
“accepted value of ¢) is generally available
at the present time.

A complete cross-referenced set of tables
has recently been completed at this labora-
tory using the Frederic (Feranti-Mercury)
computer. For each of the 38 waveguide
sizes, A (in cm), X\, (in cm and inches), 1/X,
(in cm™! and inches™), A;/A, and A/\, are
tabulated against frequency. Entitled “In-
tern Rapport E-22, ‘“Tables of Constants for
Thirty-Eight Rigid Hollow Metal Rec-
tangular Waveguides,” 12 November 1963,”
the complete report is available on request
from: Norwegian Defence Research Estab-
lishment, Box 25, Kjeller, Norway.

M. MicHAEL Brapy
Norwegian Defence Research Establ.
Kjeller, Norway

The Use of the Rayleigh-Ritz
Method in Nonself-
Adjoint Problems

This communication is a comment on the
very interesting paper! by S. P. Morgan in
the May issue of these TransacTtions. It
may be of interest to point out that problems
similar to those discussed by Morgan arise
in nuclear reactor theory. Here the operators
are not, as in footnote!, complex symmetric
integral operators but they are nonself-
adjoint, and there is considerable interest in
finding their eigenvalues and eigenvectors
by Rayleigh-Ritz methods. Morgan is cor-
rect, of course, in pointing out that the
usual maximum and minimum criteria are
lacking in these cases and that there are no
bounds or error estimates. However the con-
clusion that it is impossible to use the meth-
ods may be overly pessimistic. The methods
have been used?™ in reactor theory with
considerable success (measured by compari-
son with exact solutions), and this fact gives
hope that they may be useful in laser ap-
plications.

The key point in successful use of Ray-
leigh-Ritz methods is the selection of ap-
propriate “trial” functions. This is an art
which is quickly developed by experience
and knowledge of the physical process. In
the reactor applications one tactic which
has been found very effective is to choose
trial functions which in a sense “bound” the
true eigenfunction. For example, suppose it
is known that the true eigenfunction has a

Manuscript received November 18, 1963; revised
November 29,

Morgan éOn the integral equations of laser
theory,” IEEE TRANS. ON MICROWAVE THEORY AND
TECHNIQUES, vol MTT-11, pp. 191-193; May, 1963.

2 8. Kaplan, “Some new methods of flux synthesis,”
Nucl, Sci. Engrg., vol. 13, pp. 22-31; May, 1962.

3 S, Kaplan, 0. J. Marlowe and J. ‘A. Bewick, “Ap-
plication of synthe51s techniques to problems mvolvmg
time dependence,” Nucl, Sci. Engrg., vol. 18, p. 2;
February, 1964.

4D, S. Selengut, “Variational analysis of multi-
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HW-59126, pp. 89-124; January, 1959.

5§ G. P. Calame and F. D. Federighi, “A variational
procedure for determining spatially dependent
thgrlmal spectra,” Nucl. Sci. Engrg., vol. 10, p. 190;
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peak in the center but it is not known how
high the peak is. One would then choose two
trial functions, one having a higher and one a
lower peak than expected of the eigenfunc-
tion. The Rayleigh-Ritz method with the
criterion “make stationary” is used to
“blend” the two trial functions in the appro-
priate proportions. The justification for this
procedure is basically empirical—it gives
good results. However, a theoretical argu-
ment has been advanced® which tends to
make the process somewhat more palatable.
The essence of this argument is to view the
variational method as a special case of a
more general class of approximation meth-
ods, the “weighted residual” methods,” and
then to show that the variational method is,
in a certain sense, the best special case with-
in this class.

In the remainder of this communication
we outline the variational or Rayleigh-Ritz
process in the general nonself-adjoint case
and show the connections to the type of
operator used in footnotel.

Let the letters u, v, etc. denote elements
of a function space with a complex inner
product (%, v), and let L denote a nonself-
adjoint linear operator on this space. Then
a variational principle for the eigenvalues
of L is that the functional

(u, L)
(u, v)

be stationary with respect to arbitrary in-
dependent variations of the argument func-
tions # and v. If %, 7 denotes the point where
F takes on the stationary value A, then about
this point the first variation is

F[u, 7] = (€]

sF=—"_ [(ou, [L=\D)+([L*—7]a,50)], (2)

(a,9)
so that F is stationary if and only if A, 7 is
an eigenpair of L and A, # is an eigenpair of
the adjoint operator L*,
i =205 L' =M. 3)
(Here A = complex conjugate of \.)
To apply the Rayleigh-Ritz process we
assume approximate solutions in the form

~ Y. ah; o= Y by @
1 1

where the w;, #; are known functions and the
a,, b; unknown parameters. Inserting (4) into
(1) yields the ratio of bilinear forms

[51 v En] {h"l

I
(wn, Lh)) .
L
A ql--l

[ I
L L

and requiring this to be stationary yields the
matrix eigenvalue problem

o U e e T
Rl P e Rl

6 8. Kaplan, “On the Best Method for Choosing
the Weighting Functions 1n the Method of Weighted
Residuals,” Traens. American Nucl. Soc. Mig., Salt
LaLe Cxty, Utah, vol. 6; June, 1963.

H. Crandall “Engmeermg L\nalysxs,” Me-
Graw-Hm Book Co., Inc., New York, N.

March

Now we turn attention to the type of
operators considered by Morgan.! For these
operators the adjoint is just the complex
conjugate

L* = L (7)

(where T is the operator such that Ly =(7%)
for all «). For such operators (3) shows that
the adjoint eigenfunction is the conjugate
of the direct eigenfunction

®)

We may make use of this knowledge to spe-
cialize the principle (1) in the following way.
For operators satisfying (7) the stationary
points of F[uz, v] have the “natural” prop-
erty that they are conjugate pairs of func-
tions. Therefore, if the class of admissible
pairs (%, v) be restricted to only conjugate
pairs, then the functional over the restricted
domain becomes

=

P
i =

(3, Lv)
(@, 7)
and has the same stationary points as the
unrestricted functional. The functional (9)

is recognized as R[] [(9) in Morgan!] by
identifying (u, v) with the integral

f bzi(x)v(x)dx

Fls, 1] =

®

and Lk with the operation

b
| R

The Ritz process applied to (9) yields

o] o
(}_]b) Lki) : =2A (E’w IZ]) : . (10)
) 3
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Author's Reply

I wish to thank Dr. Kaplan for calling
my attention to the use of variational prin-
ciples for approximating the eigenvalues of
nonself-adjoint operators in nuclear reactor
theory. In the problems to which he refers,
the functions and operators are all real,
and it is possible that variational calcula-
tions may be more easily justitied for real
nonself-adjoint operators than for complex
ones.

For complex symmetric operators,! it is
definitely nof true that the Rayleigh-Ritz
procedure leads to the best approximation
obtainable with a given set of trial func-
tions, unless the space spanned by the trial
functions happens to include the (unknown)
exact eigenfunction. Specifically, it does not
minimize the distance between the exact
and approximate eigenvalues, and it does
not minimize the distance between the exact
and approximate eigenfunctions, in terms of
a quadratic metric.

Manuscript received December 29, 1963,



