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Fig. 1—A [IleIectrLc obstacle inarectangular \\,~vegtlide. The obs,tadeisnonsym-
rnetrlc with respect to a plane perpendicular to the axis z of the wttvegude.
The cylinder extends a distanced in the z direction.

Fig. 1). In order to obtain bounds on the

three distinct elements of Bfl, we evaluate

(5) by using three different forms of the trial
function, E,. To do this we choose the fol-
lowing three values for e~,

“=(:) c) andc) ‘6)
Thecorresponding values of eOtB~e@aretben
B,*, B2Z, and BII+Z3ZZ+’2B1Z. “rhe exact
solution of a dielectric slab, which fills the
region O<z<d of the waveguide (the slab

completely encloses the obstacle), is intro-

duced as a trial function. The permittivity
of the slab is retained as a parameter which

can be varied to improve the bounds. The

trial function within the region of the di-

electric slab is then

E, =
(

jC sin (7.z/a) cos Kz

)
(7)

jD sin (7rx/a) sin K-z ‘

where A-is the parameter to be varied, c and
D are constants and j is a unit vector in the

y direction. e~tB#~e~, and C and D are de-
termined by matching the tangential com-
ponents Et in (7) and H* at z = d to the

asymptotic trial expressions (B8 replaced by
B8,) of (3), and by specifying the ~-alue of O.

It can be shown that for

8 = T – kdj d(kz + W)112 < :T

we have

p~+– m

and

cw > [(7r/2)2 — k=dz — Wd~l/pd2. (8)

The requirement d(k2+ W)llz < ~~ means

that the axial extent d of the obstacle must
be Zess than +XU, where Xu is the guide wa\,e-
length in the dielectric.

Substituting (6), (7) and (8) in (5), we ob-
tain the upper and lower bounds on l?ll, i322,

and Bu+B22+2B12:

-secz (Kd) [PZQ+ + (2PR + R2)IC] (ae’)–l

< Kd tan (h-d) – KdB,l

+ sec2(Kd) (PQ+ + RI,) ~ O, (9a)

‘CSC2 (lCd) [P2Q– + (2PR + R2)1”](cw’)–1

~ – Kd cot Kd – A’dB~~

+ CSC2(Kd) (F’Q- + RI,) <O,

- {see’ (Kd) [P2Q+ + (2PR + 2R2)I,1

(9b)

+ CSCZ(Kd) [l”Q- + (2PR + 2R’)1o]

+ 4(PR + R’) sec (I@ csc (Kd)Z} (CW’)-l

< Kd[tan (Kd) – cot (Kd)j

– A-d(B,, + B,, + 2B12)

+ see’ (Kd) (PQ+ + III,)

+CSC’ (Kd) (PQ- + RTO)

+ 2R SeC (Kd) CSC(Kd)I ~ O, (9C)

where

P = (kd) 2 – (Kd) 2

Q+,- = ~[1 t sin (2Kd)/(2Kd) ]

R z ~Wds

m’ = (T/2)z — (kg + Wdz

1. = (2/abd)
J

sinz (7rx/u) cosz (K-z)dr
obst

1, = (2/abd)
J

~b,t sinz (m*/a) sinz (Kz)dr

I = (2/abd) ~ sin’ (mx/a) cos (K:)
oh st

sin (k-z) dT

(b is the narrow dimension of the wave-

guide). The range of integration in Io, I. and

1 is over the ~,olume of the obstacle.
K. KALIICSTMN
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Note on Tabulations of Constants

for Rigid Hollow Metal Rectangular

Waveguide

Precise four decimal place tables of fi-ee-
space and waveguide wavelength and related
ratios for rigid hollow metal rectangulm-

Manuscript received November 21, 1963.

waveguides were computed by the Sperry

Microwave Electronics Company and pub-

lished in this journal in 1956.1 This set of

tables was later extended to cover 28 .\meri-

cau wa~,eguide sizes and appeared in a hand-

book.z Booth has published a set of micro-
wave data tables including wa veguide wave-
length to three decimal places for ten com-

monly used British rectangular waveguide
sizes.3

CTnfortunately, two of these tabula-

tions” use a “low” value for the speed of
light: c = 299776 mks and thus contain

errors in their tabulated constants. Booth’s
tabulations use the presently accepted value

of c =299792.5 km/secf but cover only ten
British waveguide sizes,

The errors entailed b!; assuming the

older “low” value of c can be St be explained

by examples comparing the free-space and
waveguide wavelengths computed using the
“low” and “accepted” values (of c. Let us first
examine the error entailed in the computa-

~ [cm) h (cm)

frequency (Gc)
, @:76 ~ =$$$2,5

km/3ec km/see ‘

0.275 109,0094 109,0155
1.000 29,9776 29.9793

100.000 0, 299S O 2998

tion of free-space wavelength Thus it is seen
that for frequencies below ~00 Gc/ errors in

x may occur in the third or fourth decimal
place tabulated if the “low” value of c is

used. In a similar fashion, (errors can be ob-
served in waveguide wavelength for a single
waveguide size. Let us, for example, examine

& for the common 2.000X 1.000 inch outside

dimension waveguide ( IEC R-48, British
WG-12, American WR-187 and RG-49/U

numbers):
——

ku(~m) &g(cm)

frequency (Gc) (using (using
c =299776 C =299792.5

km/see km/see
—— ——.———__.——.—.—-———_

3.600 17 2416 1’7.2454
4.s00 8.2815
6 400

S.2823
5.3822 5.3825

————
Errors in & can be observed in the third
decimal place tabulated if the “low” value
of c is used.

In summary, then, presently available

tabulations of rectangular waveguide con-
stants are either slightly resi:rictecf in scope

or are present numbers that are slightly in

error for the most commonly used wave-
guide sizes for frequencies below 100 Gc.

There are presently available 38 stand-

ard rectangtdar waveguide sizes in approxi-
mately two-to-one dimension ratio cata-
Iogued according to the International EIec-
trotechnical Commission, American and

British systems. To the aut her’s knowledge,
no one complete cross refere ricing of identi-

fication systemst or complete set of tables

1Sperry Microwave Electronics Co., “Tables of
constants for rectangular waveguides, ” IRE TRANS.
ON MICROWAVE THEORY AND TECHNIQUE S,” vol.
2v2TT-4, 12 page supplement; July, 1956.

z ‘Micro~ve Engineers’ Handbook, ” Horizon-
House-Microwave, Inc., T. S. Saa,d, Ed., Brookline,
MaSS. ; 1963.

x A. E. Booth, “Microwave Data Tables, ” Iliffe &
Sons, London, England; 1959.

4 A. G. McNish, “The speed of b[ght, ” IRE TRANS.
ON INSTRUMENTATION, VOI. I-1 1, pp. 1.38-148; De-
cember, 1962.

~ T. N. Anderson, ‘Waveguide alphabet SOUP or
KXCSLP,” M%crowaw J., vol. 4, rm. 42–43; May,
1961. Cross references American tc, IEC numbers for
34 American waveguide sizes.)
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of constants for all 38 waveguides (using the

“accepted value of c) is generally at-ailable
at the present time.

A complete cross-referenced set of tables
has recently been completed at this Labora-

tory using the Frederic (Feranti-Mercury)
computer. For each of the 38 waveguide

sizes, k (in cm), Xg (in cm and inches), l/k~

(in cm-’ and inches-’), XO/X, and k/& are
tabulated against frequency. Entitled “In-

tern Rapport E-22, ‘Tables of Constants for
Thirty-Eight Rigid Hollow Metal Rec-
tangular Waveguides,’ 12 November 1963, ”

the complete report is available on request
from: Norwegian Defence Research Estab-

lishment, Box 25, A>eller, Norway.
M. MICHAEL BRADY

Norwegian Defence Research Establ.
Kjeller, Norwa~-

The Use of the Rayleigh-Ritz

Method in Nonself-

Adjoint Problems

This communication is a comment on the

very interesting paperl by S. P. Morgan in

the May issue of these TRANSACTIONS. It
may be of interest to point out that problems

similar to those discussed by Morgan arise
in nuclear reactor theory. Here the operators

are not, as in footnotel, complex symmetric
integral operators but they are nonself-
adjoint, and there is considerable interest in
finding their eigenvalues and eigenvectors

by Rayleigh-Ritz methods. Morgan is cor-
rect, of course, in pointing out that the

usual maximum and minimum criteria are
lacking in these cases and that there are no

bounds or error estimates. However the con-
clusion that it is impossible to use the meth-

ods may be overly pessimistic. The methods

have been usedz-s in reactor theory with

considerable success (measured by compari-
son with exact solutions), and this fact gives
hope that they may be useful in laser ap-
plications.

The key point in successful use of Ray-
leigh-Ritz methods is the selection of ap-

propriate “trial” functions. This is an art
which is quickly developed by experience
and knowledge of the physical process. In

the reactor applications one tactic which
has been found \,ery effective is to choose
trial functions which in a sense “bound” the
true eigenfunction. For example, suppose it
is known that the true eigenfunction has a

Manuscript received November 18, 1963; revised
November 29, 1963.
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peak in the center but it is not known how
high the peak is. One would then choose two
trial functions, one having a higher and one a

lower peak than expected of the eigenfunc-
tion. The Rayleigh-Ritz methodl with the

criterion ‘(make stationary” is used to

‘(blend” the two trial functions in the appro-
priate proportions. The justification for this

procedure is basically empirical—it gives

good results. Howe~-er, a theoretical argu-

ment has been advancedd which tends to

make the process somewhat more palatable.
The essence of this argument is to view the

variational method as a special case of a
more general class of approximal:ion meth-

ods, the “weighted residual” methods, ~ and

then to show that the variational method is,

in a certain sense, the best special case with-
in this class.

In the remainder of this communication

we outline the variational or Rayleigh-Ritz
process in the general nonself-acljoint case

and show the connections to thle type of
operator used in footnotel.

Let the letters u, v, etc. denote elements

of a function space with a complex inner
product (2.,, u), and let L denote a nonself-

ad joint linear operator on this space. Then

a variational principle for the eigenvalues
of L is that the functional

(z,, LZI)
F[ZJ, t] = —

(u, v)
(1)

be stationary with respect to arbitrary in-

dependent variations of the argument func-
tions u and v. If 2, 0 denotes the point where

F takes on the stationary value A, then about

this point the first variation is

& [(81~, [L-k]6)+([L*-X]ti, 6zI)], (2)8F=—

so that F is stationary_ if and only if A, ~ is
an eigenpair of L and k, i is an eigenpair of

the adjoint operator L*.

Ltl = Afl; L*@ = ~zt. (3)

(Here ~= complex conjugate of k. )

To apply the Rayleigh-Ritz process we
assume approximate solutions in the form

$ = ~ a,%; d S= + b,%, (4)

where the wt, hj are known functions and the

a~, bi unknown parameters. Inserting (1) into

(1) yields the ratio of bilinear forms

[61 , , . 6.] r,~ti,,,L,J[~’l
:1

and requiring this to be stationary yields the
matrix eigen~-alue problem

[(W7L’[l)I[:I=AICL’’1;’))I[:I‘6)
o S. Kaplan, “On the Best Method f(w Choosing

the Weighting Functions m the Method of Weighted
Residuals, ” T?’an. A me?ican Nzicl. Sot. ,M$g., Salt
Lake City, Utah, vol. 6; June, 1963.

7 S. H. Cmndall, “Engmeenng .lnal ysis, ” Mc-
Graw-Hill Book Co., Inc., New York, N. Y.; 1956.

Now we turn attention to the type of

operators considered by M organ.1 For these

operators the ad joint is just the complex
conjugate

L*=Z (7)

(where ~ is the operator such that Zu = (~ti)

for all u). For such operators (3) shows that

the adjoint eigenfunction is the conjugate
of the direct eigenfunction

d=$. (8)

Jlre may make use of this knowledge to spe-
cialize the principle ( 1) in the following way.

For operators satisfying (7) the stationary

points of F [z~, v] have the “natural” prop-

ert y that they are conjugate pairs of f unc-

tions. Therefore, if the class of admissible

pairs (u, v) be restricted to only conjugate

pairs, then the functional over the restricted

domain becomes

(3, Lv)
F[5, v] = —

(fl, v)
(9)

and has the same stationary points as the

unrestricted functional. The functional (9)
is recognized as R [V] [(9) in Morgaul ] by
identifying (u, v) with the integral

J

b
Zi(x) v(X)d”v

a

and Lk with the operation

J

b
k (X, y)h(y)dy.

0,

The Ritz process applied to (9) yields

[(fikL’’’)l[3=x[(
S. KAPLAN
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I wish to thank Dr. Kaplan for calling
my- attention to the use of variational prin-

ciples for approximating the eigen~,alues of
nonself-adjoint operators in nuclear reactor

theory. In the problems to which he refers,
the functions and operators are all real,
and it is possible that variational calcula-

tions may be more easily justified for real
nonself-adj oint operators than for complex

ones.
For complex symmetric operators,l it is

definitely not true that the Rayleigh-Ritz
procedure leads to the best approximation
obtainable with a gi~-en set of trial func-
tions, unless the space spanned by the trial
functions happens to include the (unknown)

exact eigenfuuction. Specifically, it does not
minimize the distance between the exact

and approximate eigenvalues, and it does
not minimize the distance between the exact

and approximate eigenfunctious, in terms of

a quadratic metric.
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